Внешний блок (сплит-система) Mitsubishi Electric PUHZ-HRP71VHA

- Производитель: Mitsubishi Electric
- Модель: Product 1815
- Наличие: Нет в наличии
Количество
321677 руб.
Описание

Компания Mitsubishi Electric представляет системы серии ZUBADAN INVERTER. На японском языке это обозначает «супер обогрев». Известно, что производительность тепловых насосов, использующих для обогрева помещений низкопотенциальное тепло наружного воздуха, уменьшается при снижении температуры наружного воздуха. И это снижение весьма значительное: при температуре -20°С теплопроизводительность на 40% меньше номинального значения, указанного в спецификациях приборов и измеренного при температуре +7°С. Именно по этой причине воздушные тепловые насосы не рассматривают в нашей стране как полноценный нагревательный прибор. Отношение к ним может коренным образом измениться благодаря кондиционерам серии ZUBADAN INVERTER.

Стабильная теплопроизводительность

Теплопроизводительность полупромышленных систем Mitsubishi Electric серии ZUBADAN Inverter сохраняет номинальное значение вплоть до температуры наружного воздуха -15°С. При дальнейшем понижении температуры (завод-изготовитель гарантирует работоспособность системы до температуры -25°С) теплопроизводительность начинает уменьшаться. Но при этом сохраняется преимущество как перед обычными системами, так и перед энергоэффективными системами серии POWER Inverter.
















Комфортный нагрев помещения

Алгоритм управления цепью инжекции может быть оптимизирован с целью достижения максимальной теплопроизводительности, например, при пуске системы в холодном помещении. Другой режим, в котором важна максимальная производительность в” это режим оттаивания наружного теплообменника (испарителя). Режим оттаивания, избежать которого в тепловых насосах с воздушным охлаждением невозможно, происходит быстро и совершенно незаметно для пользователя.

 - Максимальная теплопроизводительность при пуске















Управление режимом оттаивания
 - Результаты полевых испытаний в г. Асахикава (остров Хоккайдо, Япония)

















Цепь двухфазного впрыска

Уникальная технология двухфазного впрыска хладагента в компрессор обеспечивает стабильную теплопроизводительность при понижении температуры наружного воздуха.



















В системах ZUBADAN Inverter применяется метод парожидкостной инжекции. В режиме обогрева давление жидкого хладагента, выходящего из конденсатора, роль которого выполняет теплообменник внутреннего блока, немного уменьшается с помощью расширительного вентиля LEV B. Парожидкостная смесь (точка 3) поступает в ресивер "Power Receiver". Внутри ресивера проходит линия всасывания, и осуществляется обмен теплотой с газообразным хладагентом низкого давления. За счет этого температура смеси снова понижается (точка 4), и жидкость поступает на выход ресивера. Далее некоторое количество жидкого хладагента ответвляется через расширительный вентиль LEV C в цепь инжекции - теплообменник HIC. Часть жидкости испаряется, а температура образующейся смеси понижается. За счет этого охлаждается основной поток жидкого хладагента, проходящий через теплообменник HIC (точка 5). После дросселирования с помощью расширительного вентиля LEV A (точка 6) смесь жидкого хладагента и образовавшегося в процессе понижения давления пара поступает в испаритель, то есть теплообменник наружного блока. За счет низкой температуры испарения тепло передается от наружного воздуха к хладагенту, и жидкая фаза в смеси полностью испаряется (точка 7).



















В результате прохода через трубу низкого давления в ресивере "Power Receiver", перегрев газообразного хладагента увеличивается, и он поступает в компрессор. Кроме того, этот ресивер сглаживает колебания промежуточного давления при флуктуациях внешней тепловой нагрузки, а также гарантирует подачу на расширительный вентиль цепи инжекции только жидкого хладагента, что стабилизирует работу этой цепи.
 Часть жидкого хладагента, ответвленная от основного потока в цепь инжекции, превращается в парожидкостную смесь среднего давления. При этом температура смеси понижается, и она подается через специальный штуцер инжекции в компрессор, осуществляя полное промежуточное охлаждение хладагента в процессе сжатия и обеспечивая тем самым расчетную долговечность компрессора.
 Расширительный вентиль LEV B задает величину переохлаждения хладагента в конденсаторе. Вентиль LEV A определяет перегрев в испарителе, а LEV C поддерживает температуру перегретого пара на выходе компрессора около 90В°С. Это происходит за счет того, что, попадая через цепи инжекции в замкнутую область между спиралями компрессора, двухфазная смесь перемешивается с газообразным горячим хладагентом, и жидкость из смеси полностью испаряется. Температура газа понижается. Регулируя состав парожидкостной смеси, можно контролировать температуру нагнетания компрессора. Это позволяет не только избежать перегрева компрессора, но и оптимизировать теплопроизводительность конденсатора.

Теплообменник HIC

Инжекция жидкого хладагента создает существенную нагрузку на компрессор, снижая его энергетическую эффективность. Для уменьшения этой нагрузки введен теплообменник HIC. Передача теплоты между потоками хладагента с разными давлениями приводит к тому, что часть жидкости испаряется. Образовавшаяся парожидкостная смесь при инжекции в компрессор создает меньшую дополнительную нагрузку.

















Компрессор со штуцером инжекции

Парожидкостная смесь, прошедшая теплообменник HIC, поступает через штуцер инжекции в компрессор. Таким образом, компрессор имеет два входа: штуцер всасывания и штуцер инжекции. Управляя расходом хладагента в цепи инжекции, удается увеличить циркуляцию хладагента через компрессор при низкой температуре наружного воздуха, тем самым повышая теплопроизводительность системы. В верхней неподвижной спирали компрессора предусмотрены отверстия для впрыска хладагента на промежуточном этапе сжатия.



















Статор электродвигателя с обмоткой сосредоточенного типа
 Статор характеризуется использованием обмотки сосредоточенного типа, а также специальной структуры полюсов статора, называемой «Poki Poki Core».
Такая обмотка может быть уложена на сердечник в развернутом состоянии. Разработанный компанией Mitsubishi Electric способ изготовления двигателей существенно улучшает их эффективность.










 - Ротор электродвигателя из редкоземельного металла (компрессор)
 Во всех новых компрессорах ротор двигателя содержит постоянный магнит из редкоземельных металлов. Магнитный поток такого ротора в несколько раз превосходит поток ротора с магнитом из феррита. Взаимодействие мощных магнитных полей ротора сложной формы и статора повышает мощность и уменьшает электропотребление








 - Двигатели постоянного тока вентиляторов
 Для уменьшения электропотребления во внутренние и наружные блоки кондиционеров устанавливаются высокоэффективные бесконтактные двигатели постоянного тока для привода вентиляторов. Ротор такого двигателя имеет внешний постоянный магнит, расположенный на поверхности ротора. Эти двигатели обладают повышенным крутящим моментом на малых оборотах, что позволило снизить скорость вращения вентиляторов и уменьшить шум от внутреннего и наружного блоков.

 - PAM (амплитудно–импульсная модуляция)
 Применение амплитудно-импульсной модуляции PAM позволило максимально приблизить ток в цепи питания инверторной системы к синусоидальной форме, устранив более высокие гармоники. Минимальный сдвиг фаз между напряжением и током обеспечивает, практически, активный характер нагрузки и соответствует коэффициенту мощности близкому к идеальному (98%).
















Ресивер-переохладитель и 2 регулирующих элемента

Внедрение ресивера-переохладителя (Power Receiver), работа которого контролируется с помощью двух электронных расширительных вентилей LEV, позволяет оптимизировать производительность компрессора. Эта технология стала применяться совместно с началом использования в системах хладагентов R407C и R410A со специфическими свойствами. Благодаря ей достигается точное и эффективное управление системой независимо от колебаний температуры наружного воздуха.
















Труба с внутренней накаткой
 При изготовлении теплообменников применяется более дорогая труба, имеющая внутреннюю накатку, что ведет к интенсификации теплообмена и увеличению энергоэффективности системы.














Технические характеристики:
Вес: 120 кг
Габариты ШхДхВ: 1350x330(+30)x943 мм
Гарантированный диапазон наружных температур при обогреве: -25 … +15°C WB
Гарантированный диапазон наружных температур при охлаждении: -5 … +46°C DB (-15°C при установленной панели защиты от ветра)
Диаметр труб (газ): 15.88 (5/8)
Диаметр труб (жидкость): 9.52 (3/8)
Коэффициент производительности (COP): 3.3
Максимальный перепад высот: 30 м
Максимальный расход воздуха: 6000 м3/ч
Максимальный уровень шума: 53 Дб(А)
Мощность обогрева: 8 КВт
Мощность охлаждения: 7.1 КВт
Напряжение питания: 220-240 В, 1 ф, 50 Гц
Потребляемая мощность при обогреве: 2.34 КВт
Потребляемая мощность при охлаждении: 2.15 КВт
Производство: Япония
Фреон: R410A

"
Отзывов (0)
Написать отзыв
Ваше имя:


Ваш отзыв: Примечание: HTML разметка не поддерживается! Используйте обычный текст.

Оценка: Плохо           Хорошо